
~ 299 ~

M. Lytvynov, O. Lytvynov, V. Khandetsky, O. Hurko

ON MIGRATION OF LEGACY HOSPITAL INFORMATION SYSTEM
TO DOMAIN-DRIVEN ARCHITECTURE

Year-to-year the complexity of software keeps growing. Today's business

requires more than just an information system that responds the immediate needs. It
requires more flexible, maintainable, and testable IT infrastructure able to meet
the business challenges. Multi-layered and service-oriented [2] software architectures,
Domain-driven Design (DDD) approach with its modifications [3], event-driven
architecture can be seen as variants to handle the challenges. But the implementing
of such approaches results in dozens of huge projects with hundreds and even
thousands of classes and sophisticated testing infrastructure necessary to support
continuous refactoring of the system. It complicates the development process which
results in time and effort expenses required to realize, test, and implement the system
into organization.

Modernizing legacy systems is one of the most challenging problems for
developers often face when engineering information systems. Thus, changing
requirements of the system environment, emerging new technologies and business
models re-engineering, on one hand, and functionality, performance, usability,
maintainability issues of the legacy systems, on the other, force the companies to
start the migration process. All these statements can be fully attributed to modern
hospital information systems. Health information systems (HIS) represent an essential
part of the infrastructure for the delivery of good health care. And at this point
the question of choosing the strategy of migration arises.

Forward or database first migration provides to migrate unchanged legacy
applications forward onto a modern DBMS and then migrates the applications.
The profit of the approach seemed to be achieving better data operations
processing and data analysis performance, safety and relevancy using modern
DBMS facilities.

While the database migration step could be made iteratively, it seems not very
effective because it will complicate the cut-over as well as the gateway that would
have to mediate between the diminishing legacy database and the growing target
database.

~ 300 ~

This approach can only be applied to a legacy software where the Data-access
layer is decoupled from the upper layer by the interfaces (in case when this layer
ever exists in legacy software and separated from business logic layer).

The Reverse Migration or Database Last approach provides to migrate target
applications in the reverse direction, back onto the legacy database until it is
subsequently migrated. This method permits more time to deal with the database
migration. It involves a reverse database gateway that facilitates a Chicken Little
migration of the applications and their interfaces before the Big Bang database
migration. The reverse database gateway converts all calls to the modern DBMS
from target applications and maps them into calls to the legacy database service. It
must also capture, translate, and direct responses from the legacy database service
to the appropriate modules (means notifications).

Iteratively, it supports more target application modules until all are supported,
thereby completely encapsulating the legacy database service. It contracts as
the target applications are migrated to access the target database directly.

The advantages of the approach are as follows. Firstly, this approach can be
used for semi-decomposable and even for non-decomposable legacy applications,
while Forward Migration one cannot. Secondly, this approach is more commercially
acceptable than the Forward Migration approach because it allows legacy application to
operate uninterrupted while new application is being redeveloped.

The next important approach is the Iterative method. It implies that one
component at a time is reengineered. Thus, the legacy system gradually evolves over
a period.

The methodology enables simultaneous operations of the reengineered system
and the components of the legacy system. The components of the reengineered
system access either the legacy database or the new database, based upon the location
of the actual data to be accessed.

Prototyping and piloting are recommended as the basic strategies to test
potential solutions and validate system integrity, performance, and acceptance by
users.

Prototypes should be meaningful and focused on evaluating user interfaces
and operational usage scenarios. Pilot implementations on a small scale are
suggested to validate migration efforts. Pilot approaches are particularly useful for
gathering user input and achieving user acceptance.

~ 301 ~

Given the large volume of work on migrating legacy systems and improvement
of their understanding, approaches are divided into two groups: modernization and
replacement ones. Modernization, in turn, is classified based on two common
strategies. On the one hand, there is the strategy of encapsulating inherited logic
using a modern software layer, which is called wrapping, black boxing, or direct
migration. On the other hand, there are «white box» strategies or indirect migrations
that completely redefine the outdated system using reengineering principles.

In [1], the authors offer a «black box» method based on encapsulation, allowing
interactive features of outdated systems to be made available as web services.

Thus, the migration approach should combine the properties of the Reverse
and Iterative methods, using pilot deployment, as well as can work on the old
database, create replicas, and connect new services to them (after implementing
the pilots).

REFERENCES

1. Bisbal, J., Lawless, D., Wu, B. (1999). Grimson J. Legacy information systems: issues and
directions, IEEE Software, 16 (5), 103–111.

2. Erl, T. (2016). Service-Oriented Architecture: Concepts, Technology, and Design. Pearson
Education, Limited. 792 p.

3. Martin, R. C.(2017). Clean Architecture: A Craftsman's Guide to Software Structure and
Design. Pearson Education Asia. 352 p.

K. Maksymenko, R. Bilichenko, N. Kaliberda

ADVANTAGES AND DISADVANTAGES
OF ARTIFICIAL INTELLIGENCE

In recent years, artificial intelligence has been on everyone's lips, especially

after the launch of such services as ChatGPT and Midjourney. Some admire
the possibilities that this technology provides, while others, on the contrary, see neural
networks as dangerous. So what are the advantages and disadvantages of artificial
intelligence [2]?

Artificial intelligence (AI) is the intelligence of machines or software, as
opposed to the intelligence of other living beings, primarily of humans. It is a field
of study in computer science that develops and studies intelligent machines. Such
machines may be called AIs.

