
~ 314 ~

О. Nahornyi, V. Gerasymov, T. Vorova

EFFECTIVE DEPENDENCY MANAGEMENT IN SCALABLE
PROGRAMMING PROJECTS

In the dynamic landscape of software development, managing dependencies

is a critical aspect, particularly as the projects scale in complexity and size. This
necessitates the effective strategies to understand, control, and optimize the inter-
dependencies between various components. By examining industry best practices,
established principles, and practical tools, we aim to provide insights into fostering
a robust and scalable codebase.

As programming projects grow, the structure of dependencies between various
components becomes increasingly challenging to visualize and comprehend. New
modules, libraries, and external dependencies can create the intricate networks of
interactions, not only complicating the understanding of the current project state but
also hindering changes or additions of new functionalities [1].

The use of different versions of libraries within a project can lead to unpredictable
version conflicts. For example, if Module A uses version 1.0 of Library X, and Module
B uses version 2.0, compatibility issues may arise, impacting the correctness of
project building, deployment, and even functionality.

With the expansion of project scope and the addition of new components,
maintaining a dependency structure that facilitates effective project scalability
becomes challenging. The absence of clear rules and standards may render the project
difficult to maintain, impeding the process of making changes [3].

The possible solutions to the above-mentioned problems might be as follows:
a) use of dependency management systems, b) automated dependency analysis,
c) standardization and documentation, d) application of design patterns and architectural
solutions.
a) Use of dependency management systems:
dependency management tools such as Maven, Gradle, or npm provide mechanisms for
automating dependency management. They automate the processes of downloading,
installing, and updating libraries, ensuring uniformity in versions and preventing
conflicts [1].

~ 315 ~

b) Automated dependency analysis:
utilizing tools for dependency analysis, such as Dependency Structure Matrix (DSM)
or visualization tools, allows developers to better understand the relationships between
project components. This enhances the perception of the project structure and
facilitates decision-making regarding modifications [1].
c) Standardization and documentation:
implementing strict coding and dependency documentation standards helps to
establish a unified approach within the development team. Documenting dependencies
in clear and understandable formats makes the project more accessible to the new
team members and streamlines the maintenance process [2].
d) Application of design patterns and architectural solutions:
utilizing design patterns, such as Dependency Injection, contributes to creating
the loosely coupled components, making the project more flexible and ensuring
an easiness of making changes. Applying the architectural principles like
SOLID also aids in dependency management and facilitates an easiness of
maintenance [4].

REFERENCES

1. Eric Evans. (2003). Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley.

2. Martin Fowler. (2014). Dependency Injection. [Electronic resource].– Access mode:
https://martinfowler.com/articles/injection.html

3. Robert C. Martin. (2002). Principles of Object-Oriented Design. [Electronic
resource].– Access mode:
https://web.archive.org/web/20140213162847/http://butunclebob.com/ArticleSUncleBob.
PrinciplesOfOod

4. Steve McConnell. (2004). Code Complete: A Practical Handbook of Software Construction.
MicrosoftPress.

N. Nomerchuk, T. Prokofiev, O. Hurko

OPTIMIZATION OF EXPONENTIAL FUNCTION COMPUTATION
IN JAVA USING LINEAR INTERPOLATION METHOD

Exponential functions used by standard mathematical libraries have high

precision but concurrently demonstrate considerable computational overhead. To
optimize performance across various scenarios, such as neural network implementations

