
~ 315 ~

b) Automated dependency analysis:
utilizing tools for dependency analysis, such as Dependency Structure Matrix (DSM)
or visualization tools, allows developers to better understand the relationships between
project components. This enhances the perception of the project structure and
facilitates decision-making regarding modifications [1].
c) Standardization and documentation:
implementing strict coding and dependency documentation standards helps to
establish a unified approach within the development team. Documenting dependencies
in clear and understandable formats makes the project more accessible to the new
team members and streamlines the maintenance process [2].
d) Application of design patterns and architectural solutions:
utilizing design patterns, such as Dependency Injection, contributes to creating
the loosely coupled components, making the project more flexible and ensuring
an easiness of making changes. Applying the architectural principles like
SOLID also aids in dependency management and facilitates an easiness of
maintenance [4].

REFERENCES

1. Eric Evans. (2003). Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley.

2. Martin Fowler. (2014). Dependency Injection. [Electronic resource].– Access mode:
https://martinfowler.com/articles/injection.html

3. Robert C. Martin. (2002). Principles of Object-Oriented Design. [Electronic
resource].– Access mode:
https://web.archive.org/web/20140213162847/http://butunclebob.com/ArticleSUncleBob.
PrinciplesOfOod

4. Steve McConnell. (2004). Code Complete: A Practical Handbook of Software Construction.
MicrosoftPress.

N. Nomerchuk, T. Prokofiev, O. Hurko

OPTIMIZATION OF EXPONENTIAL FUNCTION COMPUTATION
IN JAVA USING LINEAR INTERPOLATION METHOD

Exponential functions used by standard mathematical libraries have high

precision but concurrently demonstrate considerable computational overhead. To
optimize performance across various scenarios, such as neural network implementations

~ 316 ~

or time series forecasting, leveraging exponential function approximations can be
warranted, thus mitigating computational burdens.

For instance, to address a specific task of decomposing spectra into individual
bands [1], a mathematical model for approximating the experimental spectrum into
its constituent components was utilized and implemented as a Java application. However,
the execution time of one computation was approximately 0.067 milliseconds, while
the overall program execution time amounted to 275.4 seconds, which did not meet
the requirements. Upon analyzing the application, it was found that the primary
cause of slowdown was the utilization of the standard java.Math.exp() function,
which is implemented as a native method and consequently invoked via the Java
Native Interface (JNI). The process of invoking a native method involves suspending
the execution thread of the Java Virtual Machine (JVM), transferring control to
the native code of the operating system, and returning control to the suspended
thread, which is quite time- and resource-intensive.

Therefore, as an alternative, the possibility of creating a custom exp() function
utilizing linear interpolation was considered. To achieve this, it was necessary to
take into account the representation of floating-point numbers. They are represented
by the formula [2]:

 𝑘𝑘 = (−1)𝑠𝑠 × (1 + 𝑓𝑓) × 2𝑥𝑥−𝑥𝑥0 (1)
where,s – a binary variable that determines the sign of the number and can take on
the values 0 or 1 (sign), f –a mantissa (fraction) – a binary fraction in the range [0,1),
and x – the exponent shifted by a constant x0. In the JVM, according to the IEEE-754
standard, floating-point numbers are defined with a 52-bit mantissa and an 11-bit
exponent with bias x0=1023, occupying 8 bytes (Fig. 1). The components of this
representation can be manipulated by accessing memory bits as a pair of 4-byte
integers. Any integer written to the x component (via the higher-order 4 bytes) will be
exponentiated when the bytes are read back in floating-point format. This is a key
concept for fast exponentiation.

Figure 1. Bit representation of double-precision numbers according to the IEEE-754 standard

~ 317 ~

Since the component x resides in the 4 most significant bits of the number,
the integer k to be exponentiated must be left-shifted by 20 bits after the addition of the x0
offset. Thus, i = 220(k+1023) calculates 2k for integer k. For non-integer arguments,
the fractional part of k will transition to the higher-order bits of the mantissa f,
according to the IEEE-754 specification, representing linear interpolation between
adjacent integer exponents. Therefore, this method effectively exponentiates real
numbers by searching in a table of 211 values and performing linear interpolation
between them.

To compute ey, one needs to divide i by ln(2). The complete transformation of y,
required for rapid approximation in IEEE-754 format, is defined by the expression:

 𝑖𝑖 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 (2)
where, a = 220/ln(2), b = 1023⋅220. In the Java environment, expression (2) will take
the following form:

public static double exp(double val) {
 final long tmp = (long) (1512775 * val + 1072693248);
 return Double.longBitsToDouble(tmp << 32);
}
The long data type is used to avoid overflow. Furthermore, by performing

a bitwise shift by 32, the approximated value of the function ey is returned.
A comparative performance analysis of the standard and custom functions

for 𝑒𝑒(𝑦𝑦𝑖𝑖), i=108is provided in Table 1.

Table 1. Comparison of functions

Function Calculation time, ms Maximum deviation Minimal deviation

java.Math.exp 9244 0% 0%

Approximated exp 1864 3.02% 0.07%

The conducted study demonstrated that the application of linear interpolation

for functions of the form ey increases speed and provides a significant improvement
in work efficiency by reducing the computation time of the exponential function
compared to the standard java.math library by approximately 5 times. The developed
Java method has a small deviation (approximately 3%) from the exact values of
the exponential function, which does not significantly affect the overall quality of
the final result.

~ 318 ~

REFERENCES
1. Спосіб аналізу експериментальних спектрів люмінесценції монокристалічних

матеріалів: пат. 126608 Україна: G01N 21/62, G06F17/17. №a 2020 07016; заявл.
02.11.2020; опубл. 04.05.2022, Бюл. №18. 6с.

2. IEEE. (1985). Standard for binary foating-point arithmetic. ANSI/IEEE Std. 754–1985.
New York: American National Standards Institute/Institute of Electrical and Electronic
Engineers.

S. Orlov, T. Nakonechna, Yu. Honcharova

MODERN METHODS OF ADDITIVE MANUFACTURING OF
THREE-DIMENSIONAL OBJECTS BASED ON FUGO TYPE PRINTER

Modern methods of additive manufacturing of three-dimensional objects (for

example, stereolithography, 3D printing, etc.) allow the production of high-quality
products with high precision, but such methods have significant limitations and
drawbacks.

At the moment, there is a need for a system and method to ensure 3D printing
with improved part quality and increased printing speed. A team of developers from
the USA has patented [1] the Fugo 3D printer based on a centrifuge, which can
significantly accelerate the printing of complex parts, their quality, and application
conditions. Production based on a centrifuge does not require the influence of
gravity, which is an invaluable breakthrough and a bright ray of light for the future
of humanity, as it will allow printing any complex parts and tools in space, which
until now has not been possible for liquid polymer printing technologies. In addition to
eliminating the drawbacks of existing 3D printers and approaches to manufacturing
super complex objects, this enables people to simplify printing from metal and other
super hard materials greatly. Like other printing systems, this printer requires high-
quality and fast software to convert user models into printer instructions. Developing
such software for an innovative cylindrical printer is an extremely important task as
it directly affects the quality and speed of printing models, which is necessary for
many users and entire enterprises.

The basis for future research is the transformation of data about a 3D model
into a sequential set of layers for printing on a cylindrical printer, which is interpreted as
a set of instructions for the Fugo type printer that are executed using internal

